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Abstract

Current software development paradigms focus on the products of the devel-
opment process. Much of the decision making process which produces these
products is outside the scope of these paradigms. The Decision-Based Soft-
ware Development (DBSD) paradigm views the design process as a series of
interrelated decisions which involve the identification and articulation of prob-
lems, alternates, solutions and justifications. Decisions made by programmers
and analysts are recorded in a project data base. Unresolved problems are also
recorded and resources for their resolution are allocated by management ac-
cording to the overall development strategy. This decision structure is linked to
the products affected by the relevant decisions and provides a process oriented
view of the resulting system. Software maintenance uses this decision view of
the system to understand the rationale behind the decisions affecting the part
of the system to be modified. The relationships between decisions help assess
the impact of changing one or more decisions. We describe D-HyperCase, a
prototype Decision-Based Hypermedia System and give results of applying the
DBSD approach during its development.



1 Introduction

Although most people believe that the structured methods introduced in the
70’s to combat the “software crisis” have increased productivity and reliability,
there is evidence that such methods may contribute to the problem of develop-
ing software systems [Sne89]. A top-down design decomposition may be a good
method for documenting a finished design, however it is a poor model of the de-
sign process !, presenting an often unachievable ideal. On the other hand, most
bottom-up, or compositional, approaches to software development also fail to
adequately support the design process by narrowly focusing on the products of
software development (such as libraries of functions or objects). Current struc-
tured engineering methods use the product structure to structure the tasks of
the design process. However, many aspects of the design process have no coun-
terpart in the product structure. The need to represent the process structure as
well as the product structure has recently attracted interest [IEE83). However,
much of the emphasis in this research is on modeling the design process as a
program execution in which the initial problem is transformed into a number
of intermediate products culminating in the final product. the software desired.
The record of the transformations performed constitutes a design plan that can
be replayed when the design is reused or maintained [Bal85 Fic85]. Such a
record may capture the results of a design process but does not represent how
the design was actually done. Again the design process is not supported and
information about the design process is lost. This loss of information makes it
difficult to replay the process program [Mos36,Bal88].

In contrast to this transformational model of the design process is the prob-
lem solving model [Das89,Con88). The problem solving model involves:

e Identification and articulation of the problem to be solved. In many cases
the true problem has not been identified at the beginning of the design
process. An important aspect of the design process is the discovery and
analysis of the problems to be solved.

e Most problems allow for several different solutions. One of the skills of
a good designer is the ability to generate alternate solutions. For some
problems, only one choice among the alternates is necessary. In other
cases, several choices among the alternates may be desirable (for instance,
to improve performance). Because a solution to a problem may itself
constitute a subproblem, the process of problem solving is recursive.

o The myriad of choices facing the designers is one reason the design process
is so difficult. There is a risk that a proposed solution may in fact prove
infeasible. Analyzing the alternate solutions to a problem can be very

1\We use the term design process to encompass all activities which constitute the software
life cycle including requirements analysis, specification, design, implementation, validation &
verification and maintenance.
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time consuming. In some cases, a simulation model or prototype must
be built to better understand the tradeoffs among a set of alternates. If
there are several feasible solutions, choosing an optimal one may not be
possible due to the large number of choices available. Often the best the
designer can achieve is a solution that satisfies all the constraints. The
skill and experience of the designer then determines the optimality of the
proposed solutions. Much of what is termed soft ware maintenance involves
the reexamination of the set of alternates.

e The current choice of one or more alternatives.

The design process is limited by the inability of people to articulate a precise
characterization of the problem they wish to solve and to thoroughly under-
stand the consequences of their proposed solutions 2. This limitation means
that problem requirements are frequently incomplete, inconsistent, or otherwise
inappropriate expressions of the problem to be solved. Thus the design process
will involve changes to the problem requirements. Software maintenance is a
continuation of the design process resulting from changes in the problem require-
ments (adaptive), changes to correct faulty solutions to a problem (corrective)
or changes to improve inappropriate solutions (perfective). A design and main-
tenance methodology which supports the problem solving aspects of software
development must help the software engineer manage change by recording the
decision rationale and the relationships between problem and solutions.

In this paper, we propose the Decision-Based Software Development
(DBSD) paradigm to software development and maintenance. In the DBSD
approach, the decision is the focal element of the problem solving process. The
importance of recording the decisions made during the design process and their
justifications has been recognized by othersfRORL90]. The KAPTUR (Knowl-
edge Acquisition for Preservation of Tradeoffs and Underlying Rationales) sys-
tem supports reuse of alternate architectures for telemetry and command control
center software [CTA89]. KAPTUR records distinctive features of the recom-
mended architecture. Distinctive features are those in which an architecture is
significantly different from other architectures. The rationale for choosing the
distinctive feature is also recorded. Plausibility-Driven Design was developed in
order to build confidence in a proposed computer architecture before a physical
realization is undertaken [AD87]. Each problem decomposition step records the
knowledge used in that step and the justification for taking that step. Because
performance is a critical aspect of computer architecture design, this approach
integrates non-functional requirements into the design process. The automated
replay of designs is an important part of the specification-based software gener-
ation paradigm [Bal85]. A recent review of work in this area identifies the need
to record and utilize decisions and their justifications in order to make further

2This limitation is what Simon refers to as “bounded rationality” in synthesizing a design.
(Sim81)
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progress in this research [Mos89].

Section 2 presents our approach to decision based software development. In
section 3, issues with respect to software maintenance are discussed. In section
4, D-HyperCase, a CASE tool to support DBSD, is described. In the following
section, results on the use of our DBSD approach to the development of D-
HyperCase are given. In section 6, we discuss our experiences with the DBSD
method and outline several future developments we plan to undertake.

In the rest of this paper, we use the term software development to include
both pre-deployment design as well as post-deployment design. The distinc-
tion between initial development and continuing maintenance is often artificial.
Maintenance begins the moment that the first requirement is written down and
continues throughout the life cycle. In addition, a significant part of software
maintenance is development of new or corrected functions. The boundary be-
tween software reuse and adaptive maintenance is fuzzy at best. Software devel-
opment by evolving existing systems may be the preferred method of developing
applications in the 1990’s. For these reasons, much of what will be discussed
in this paper applies equally well to initial development as well as maintenance
and we will use the term software development to encompass both activities.

2 A decision based paradigm for structuring
the problem solving process

In the Decision Based Software Development (DBSD) paradigm, the problem
solving process is documented by its decision structure {as defined in section
2.2). This decision structure provides a new way of viewing of the software
document base 3. Data base researchers have introduced the term ‘view' to
allow for different interpretations of the same data. Similarly, we propose the
term ‘view’ to allow for different structuring of the same document. A view
organizes a document, or a set of documents, from a particular perspective. For
example, a module view describes the traditional module structure of source
code. For a programming language which supports functional abstractions,
the module view gives the sets of functions composing the system and their
interrelationships. For other languages, the module view would be the set of
data abstractions, packages or objects composing the system. While the value
of the module view is well recognized in software engineering, other views of
the document base are also useful. Data flow analysis views a system through
the definition and use of data items. In this paper, we propose the decision
view of the document base. This view structures the document base according
to the decisions made during the problem solving process which created it. For
example, the source code decision view is the set of source code statements

3The document base is the set of documentation supporting a software project. This
includes requirements, specifications, design documents, test plans, operations manuals, etc.
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pertaining to a particular decision.

2.1 The Problem Solving Process

The exploration of the problem/solution space is frequently driven by perceived
risks [Boe86], special opportunities, managerial directive or personal/team pref-
erence. Issues which are not clearly understood may be explored in some depth
before returning to mainstream development. In the early stages of problem
solving, brainstorming can be very productive [CB88]. The order in which the
problem/solution space is explored may appear arbitrary to the outside ob-
server. Managing this highly creative process is one of the major challenges
of software engineering. Some claim that one of the goals of modern software
engineering is reproducibility of the products. The danger of reproducibility
is that it limits creativity in the solution. Great designers should be expected
to produce better solutions than less experienced and less talented colleagues.
However, if the system is to be maintained by others, then the thought process
which went into that great design must be captured. In this way great design-
ers can be used to maximum advantage and others can learn from their efforts
through the documented record of the design process [Bro37]. Creativity must
be supported, nurtured and managed. We believe the creative aspects of the
problem solving process can be structured, aithough not through a structure
imposed by the products (that do not yet exist) but rather through support of
the process which eventually will produce a structured product. Because there
is a record of each step in the problem solving process, there is not the same
need to record product structures early in the process.

By considering the development process to be a problem solving activity,
lessons learned in the research in automated problem solving can be applied to
software development. The design process is characterized by search [Das89].
This search is performed in a certain chronological order determined by the
problem solving strategy. This search is characterized by dead-ends and sub-
optimal solutions. Backtracking is necessary in order to recover from earlier
bad choices. It is well known that backtracking in chronological order of the
decisions made can be very inefficient. A bad choice made very early in the
design process will require backtracking to that point with the loss of all work
done after that choice. This is true even if the decisions made after the faulty
one do not depend on it in any way. In order to increase the efficiency of search,
one can record the dependencies between decisions and only retract those deci-
sions which are truly dependent on the bad decision. This kind of backtracking
is called dependency directed backtracking [Doy79]. The work on depen-
dency directed backtracking has led to a problem solving architecture which
separates the problem solver from the process which records and maintains the
dependency information (commonly referred to as the Truth Maintenance
System [dK86]). Our work adopts this architecture. The decision making is
done by people while the software engineering environment maintains the doc-
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ument base including the dependencies between decisions. The backtracking
that occurs during the initial development as well as that which occurs during
maintenance becomes more efficient and reliable because of the record of the
true dependencies between decisions, problems and solutions.

2.2 The decision structure

The DBSD approach augments a traditional software development document
base by a record of individual decisions and the relationship among them. An
individual decision is a 4-tuple as shown in Fig. 1. These solutions in turn

Problem: description of the problem being addressed by this decision.

Alternatives: a set of possible solutions to the problem. Recording the set of
alternates not chosen has several advantages:

¢ Promising alternates which led to dead-ends or undesirable results may
prevent wasted effort during maintenance if redesign involves this deci-
sion.

e Promising alternates which were identified but not pursued due to lack
of resources can provide help facilitate future improvements.

Solution: The alternate(s) chosen to solve this problem.

Justification: The reason why the particular solution was chosen. A justification
can take many different forms:

s A formal proof that the solution satisfies the problem.
e An informal argument of satisfaction.
¢ Results from a prototype, simulation or literature review

e Non-technical issues such as limited resources. company policy or legal
restrictions may influence the decision.

o The existence of previous decisions may provide a context in which a
particular choice is preferred.

e A time/space analysis.
e An estimate of engineering effort to produce a solution (cost analysis).
o Compatibility concerns with systems which must interface to this system.

e Operational compatible with fielded versions of this system.

Figure 1: Decision Object

may lead to other problems. The last decision in a chain of problem solving
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should refer to some software product which documents the solution 4. The
beginning of a well-formed problem solving chain should be some requirement,
specification or need. For purposes of visualization, a decision is divided into two
parts. We introduce the term problem node to mean a node which contains
the description of a problem, and a decision node, a node which contains the
selected solution including alternatives and justifications.

The relationship between problem and decision nodes is represented in a de-
cision dependency graph. We define a dependency link between decisions
if one decision generates a solution which becomes the problem addressed by the
second decision and a justification link between nodes when one node is used
to justify a particular decision in the second node. Justification links provide
the context in which a decision is made.

The distinction between dependency and justifications is important during
the change process. When a problem node is deleted, all nodes dependent only
on it can also be removed because we no longer have to solve that particular
problem. Typically a change in a requirement will require a change in some
of the original decisions. Old solutions may no longer work and any decisions
which depended on only those solutions can be discarded. Any code associated
with a discarded decision is obsolete and should also be discarded. Changes in
a node justifying a decision may or may not require changes in that decision.
For example, the choice of a particular interprocess communications protocol,
although sub-optimal, may be justified by its availability, the lack of availability
of a better protocol and the limited resources available for implementing a better
protocol. If at some later time, a better protocol becomes available, it is still
possible to use the implementation based on the old protocol even though the
justification for choosing it has gone away. Having a record of the decision and
its justification helps other people understand why the system is implemented
in a suboptimal manner. On the other hand. if the old protocol is removed and
replaced by a new one. then the decision must be changed.

Any of the nodes in the decision dependency graph can be related to a
software document by a view link which associates all relevant sections of the
document to that node. The result is a decision graph which links requirement
nodes to the relevant information in the document base as shown in Fig. 2.
A requirement may be refined into one or more sub-problems. The solutions
to these subproblems can be done in the context of other decisions. In the
figure, requirement “R3” might represent a non-functional requirement whose
refinement as “P4” justifies the functional decision “D4". The structuring pro-
vided by decisions does not necessarily correspond to the normal presentation
structure of a document. The view of a decision may be scattered through-
out a document impacting many parts of it (e.g. the view of decision “D6").
In addition, several decisions may impact the same part of the document. As

4What constitutes a solution differs with the level of abstraction of the problem solving.
Specifications and design documents represent different levels of solutions. The requirement
document represents a high level solution to the user’s problem
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shown in the figure, the decision views of “D5” and “D6” overlap. Associating
multiple views with a portion of a document helps the software engineer better
understand the complex interrelationships that exist within the software system
and to assess the impact of making changes to the related parts of the system.

Through the decision dependency graph, one can trace from any document
back through the relevant decisions to a requirement. One can also trace from a
problem to its solution, expressed perhaps as the lines of code which implement
a solution to that problem. Requirements, specifications and design documents
represent a solution at their respective levels of abstraction and can also be
viewed through the decisions which created them. Also some of the final solu-
tions are not programs. Users manuals and operations guides are part of the
system solution and can be in the view of decisions. Fig. 3 shows the decision
dependency graph divided into levels corresponding to requirements, specifica-
tions, design and implementation. This figure indicates the generality of the
DBSD paradigm. All phases of the life cycle can be viewed as problem soiving
and the corresponding products can be viewed through its decision structure
5. The solutions posed at one phase of the life cycle become problems to be
solved at later stages of the life cycle. Although in this paper we concentrate
on the decision view of the document base, other methods for viewing the set
of documents may be available. The figure shows a module view and its call-
ing structure, a data flow view, the user/system behavioral view (expressed as a
context free behavior grammar), and animation figures to simulate the execution
of the program.

2.3 Using DBSD for Design

As much as was practical, the DBSD approach was used during the design
of a prototype DBSD software engineering environment called D-HYPERCASE
[WMB9]. This exercise has given considerable insight into the use of the DBSD
paradigm for initial development. It was anticipated that recording the decision
structure would place an additional burden during the initial design, but that
the increased costs would be justified by better support for maintainability.
What we learned, however, was that using the DBSD paradigm could provide
valuable support of the initial design process. Three advantages of the DBSD
approach for the design process discussed in this section are:

e Managing the dynamics of the design process.
o Identifying incompleteness in the requirements.

o Placing a particular problem solving activity in a larger context.

$In the figure only one of the two views at each of the early life cycle levels is shown. This
was done to reduce clutter within the figure.
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One of the most important issues to be addressed in a maintenance support
environment is the traceability of the program to its requirements and vice versa.
This allows the software engineer to understand a program (by tracing back tc
requirements) or to assess the impact of changing a requirement (by tracing
from requirements). Every requirement should be linked through the decision
dependency graph to the source code and vice versa. Top-down and bottom-
up approaches build traceability graphs which are always connected. However.
it may not be possible or desirable to keep the traceability graphs connected
If the state of the problem solving process is recorded. then it 1s possible tc
schedule the problem solving process opportunistically. Thus. il an expert in
security from company headquarters is visiting this week. management max
choose to work on security problems even thoush such work may he otherwis-
premature. In fact. it may not be possible 1o choose a solution because th-
security requirements have not yet been sulficicntly refined. However, alternat-
solutions could he recorded along with the justifications for choosing one over
the other. Work on this problem can he recorded i a decision node with th-
solution slot left ~mpty. This exploration may also indicare in what way th-
requirements with respect to security are vague and need ro be clarified 2
expanded. as well as the possible interactions with other disign coneetns

In some cases when solving problems. several alternates can he wdentified
but there is not sufficient information to choose one over the other. The softwar-
engineer could shoose one arbitrarily. but the danger i this s that if a similar
problem must be solved somewhere ulse. then adifferent choiee rould fead 1o
inconsistency (at least in stvle}. Recognizing that one s faced with an arbitrar:
chotce leads to the identification of 4 new problenin whieh this probleuy and al
similar problems are specific instances relving on the sane justification. For ex-
ample in designing the user interface for the protorype. the problem of handhng
erroneous inputs was faced. There are inany sivies of handling error message-
and it may not matter much which one is chosen m a particular program. Th-
requirements writer may not wish to specify a particular error handling styl:
because to do so may unnecessarily restrict the design. However. whichever
style is chosen should be used consistently throughout the system (such consis-
tency may be a requirement). Thus justifving a particular solution identifies a
larger context in which this solution occurs. poses the larger problem. solves it
in general and then uses that solution to justify the particular solution.

During the design of the prototype, we found a number of cases in which it
was easier to develop a solution to a problemn than to identify the problem itself.
That is we tended to write requirements in terms of a particular solution rather
than as a general problem statement (designing in the requirements). Solutions
tend to be more visible than the underlying problems. By asking what problem
does this requirement address, we were often able to discover when this hap-
pened. For example, the original requirements for the prototype called for one
editing window and several read-only windows to display parts of the document
base. The read-only windows used very different conventions than the editing
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window for browsing through documents. This requirement represents a partic-
ular solution to a more general problem relating to response time. The editor
which we planned to use for this project is a large program. It was anticipated
that having multiple copies of the editor, one for each read-only window would
be detrimental to performance. However, the program specified to manage the
read only windows was an existing UNIX utility which used a very different
command structure from that used by the editor. The requirements specified
one way to solve the problem and in doing so raised the problem of muitiple
inconsistent sets of commands for the common functions to browse through a
document. The real problem to be solved was how to achieve acceptable per-
formance given that the user could have several windows open concurrently and
given the non-functional requirement for a consistent user interface. By »mipha-
sizing problems, alternates. and solutions. many of these pseudo problems can
be discovered.

3 How DBSD supports software maintenance

The challenge facing the maintenance ~ngmeer s deed atormidable o The

maintenance engineer must selectively nnderstand in sutficient detail those nares
of a large system which are the focus of a particular maintenance task The
impact of alternate solutions to that task within the overall structure - the
system must be assessed and the chosen solution must be implemented wirhout
violating existing constraints of the systeni. Given that it is unpossiti= for
anyone to completely understand any large systern i intimate detail, the <ipszess

of any maintenance task lepends on the ability to tind the relevant information
in the document base. The set of relevant information needed to perform a
maintenance task is referred 1o as the closure

3.1 Understanding the Software Document Base

The original designer comes to an understanding of the system rather slowly
and records that understanding in a series of documents. The main purpase of
these documents is to help the maintenance engineer come to a similar under-
standing of the system. The difficulties with creating, maintaining and using
documentation are well known. Many authors assume that only the source code
is truly up to date and work only with the source code in maintaining a system.
Also the structure of most documentation is along the lines of the products
produced and it is difficult to find the relevant portions of the document base
which pertains to a particular problem solving activity. This difficulty means
that it is unlikely that the document base will be adequately maintained. Be-
cause of this, a major portion of the time spent on a maintenance task is spent
in understanding the existing system [Cha88.\WWM38]. The decision structure
partitions the document base into decision views. The decision closure are all

S



portions of the document base which are related to that decision. In the DBSD
paradigm, understanding a document base means finding the relevant decisions
(by browsing or keyword search) and viewing the document bhase through those
decisions. The justifications and alternates considered. as recorded in the deci-
sion helps the maintenance engineer understand why the system is structured
as it is.

Fig. 3 illustrates the relationship between the decision dependency graph
and the software document base.

[t is important to realize that a line of a document may he part of several
views. For example, a line of code might exist hecause it is part of a decision
on security policy and also because it calculates some function (which needs tc
he secure). This line would be in the view concreruing security policy as well a-
the view concerning the function.

3.2 Assessing Change

Assessing the impact of making a chauge mvolves two eonsiderations.  Firss
what parts of rhe document base st be changed” Second. how much effort s
ivolved in making those changes” The DBSD paradigm suppores the Arst b
leaves the as<essment of effort to hman judgement. Finding the relevant parr-
of the docun-nt base which are affected by the change is done in the under-
standing phase under the term closire. Unless one is adding nesw functionality
performing A maintenance task requires that some deecisions he changed. The
true closure of a change is the set of statements added, delered. or modifie!
during the shange. The closure found Juring the understanding phase is hope-
fully an upper bound on those portions of the document base which must b-
modified or deleted.

Although assessing effort is a matter of human Judgement. the lecision strue-
nure can assist in making that judgement. Work on previous alternates may hav-
estimated effort in order to choose a solution. For exanmple. suppose that ther-
were two viable alternates to a problem. one which is easy to implement but
relatively inefficient. and one efficient but Jdifficult to implement, and that the
simpler solution was chosen. [f the maintenance task is to improve the perfor-
mance in this area, then the information recorded in the decision structure may
assist in assessing effort. In addition dead-end alternates which are recorded in
the decision will help avoid wasted effort in maintenance.

3.3 Implementation of a change

When implementing a maintenance task one is both constrained and assisted by
the existing solutions. The interrelationships between parts of a software system
makes it difficult to make changes without introducing new faults. The intro-
duction of faults into the system often occurs because of dependencies between
parts of a program which appear in separate modules [LS86]. Understanding
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the policy, style and functional issues which constrained the previous solution
(as recorded in the justification section of the decision) will help in generating
an implementation which is consistent with the rest of the system.

In implementing a maintenance task it is critically important to update all
parts of the document base which are affected by the task. It is all too easy
to neglect to update the supporting documentation when performing a mainte-
nance task. Often it is difficult to find the relevant portions of the supporting
documentation which require maintenance. By tying all documentation to the
decision structure. we hope it will be easier to find and maintain the supporting
documentation. The support environment could insist that all documentation
associated with a changed decision be changed or certified as unaffected by the
change. Structuring the document base through the Jecisions will help ~ontrol
the evolution of the entire document base.

Maintenance is a particularly intense form of reuse [Bas90]. Finding those
portions of an existing system which can he reused is one of the challengss for a
maintenance methodology. When implementing the DBSD prototype we found
that the intersection of a function and a view (which we call a frame, s an
extremely good candidate as the unit of reusing code Several proposals have
been made - procedures. templates, Hnes of eode s absteact data rype - bar faales
have been found with ecach one. In DBSD it s cisy o bl a new wiew by
extracting frames from other views

4 D-HyperCase: A Decision-Based-Support-System

D-HyperCase is a prototype software engineering environment being developed
to evaluate the DBSD paradigm. This section briefly disciisses D-HyperCaze
A more complete description is given in W[N]

4.1 D-HyperCasc Abstract Machine

The project document base was defined in section 1 as the sum total of the
recorded information about the project. The decision structure records the de-
cisions made, alternatives considered and justifications for the solution chosen.
As importantly, the decision structure provides a backbone with which to or-
ganize and access the other forms of software documentation. The ability to
selectively view related parts of a set of documentation from different view-
points is closely related to the work on hypertext [Con87]. Some of the early
demonstrations of the decision based approach were done using the KMS hyper-
media system [AMY88]. The two limitations to current hypertext system which
were experienced were the inability to enforce a certain minimal structure on
the set of documentation and the difficulty of integrating project related tools.
The way we have chosen to introduce structure in the network of information
comprising the project document base is to base the design on a set of typed
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objects and typed links. Thus a problem object always contains a link to some
decision object. The set of objects and links is user extensible. Each of the
objects is managed by its own set of tools which are bound to the objsct at the
time of object type definition. Each object must have as a minimum a display
tool and an edit tool.

Since the ability to access the various objects in the project document base
is a crucial part of our approach. we have chosen to build D-HyperCase on top
of an Abstract HyperLink Machine (AHM) as shown in Fig. 4. This approach
is similar to that taken in the design of Neptune [Big38]. The AHM maintains a
data base of all the object types and their associated tools and the names of all
objects according to type. Using this information, it can invoke the appropriate
tool to display or edit any object (thus linking to that object). [t also maintains
a list of objects which the user has seen this session in order. This allows rhe
user to retrace his steps through the document base.

The AHM supports two types of links: structured links and name links
A structured link i3 defined between two typed objects. one of whoh s rhe
“from™ object and the other is the “to™ object Whenever an aboest ar the
“feom™ end of the hink s defined, 1t auromncieally wherits all the <roaeriredd
links for which tts type s the “from™ object. Uhese links define th- munimal
structure which must exist for the new object. Thus, every objes of type
“problem”™ must have a link to a decision. Ou the other hand. name links
provide access to objects using their name. These links are implict and need
not be represented in the AIIM ohject base. Any objest can hiave an achirrars
number of name links.

There 1s an interface to these facilities which can be accessed by any 1ool
building on this layer. This minimal toolset provided on the Abstrace HyperLink
Machine layer consists of a modified Emacs text editor 'Staxé) and 1 maedified
version of the Structured Graphical Knowledge Base Svstenn (SGRBS SLHRS
under development at ODU. These tools support generie objects of “he super
class ~text”™ and “graph™ respectively. The minimal toolset defines cne instan-
tiation of a HyperMedia system based on AHM. D-HyperCase is then built on
this layer. Further project specified tools can be built on top of D-HyperCase.

D-HyperCase is defined in terms of its objects and associated tools. These
are described in section 4.2. A D-HyperCase tool can access the AHM directly
through its tool interface. Such tools are called integrated tools and allow the
user to directly traverse HyperLinks from within the tool (by whatever interface
the tool writer wishes to provide). In addition, D-HyperCase allows the inclusion
of non-integrated tools. Thus the set of tools available in D-HyperCase can be
expanded to include commercially available tools. These tools would not have
a direct interface into AHM. However, the user could access AHM facilities
through the D-HyperCase background menu as described below. In general.
the D-HyperCase tools allow display and editing of the software objects defined
in the project document base in ways appropriate for that object. For example,
the source code editor understands the syntax of the source language (because
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it is a structured language editor), the relationship between source code views
and decisions and allows the user to access related information through the
HyperLink facility. The editor for source code objects is built upon the modified
Emacs editor provided in the minimal ool sef heemse souree code is a subelass

of the class of text objects.

4.2 D-HyperCase: User's Porspective

We now describe D-HyperCase from the user’s perspective. Fig. 5 shows the ini-
tial screen shown to the user upon entering D-HyperCase, This screen provides
an overview of the D-TyperCase System and is an abjeet of type “document
figure.” Through the use of the hyperlink facility, this screen provides access
to other screens which further explain the varions components aud usage of
D-HlyperCase. The top left panel shows the objects which are defined. The
top right panel gives a pictoriad representation of a prototypical decision graph.
Further explanation is available on demand using the hypertext facility. The
bottom left pancl shows the set of tools which are available. The D-HyperCase
tools are those provided by the basic D-HyperCase machine. The User tools are
those tools which are provided on top of D-1lyperCase. The hottom right panel
ilustrates the MyperLink conncetion hetween o decision node in the decision
graph and its associated deseription and the set ol souree code views affected
by this decision Selecting a decision node e this graph will display a menn
which inchudes the nanes of all HyperLinks. This allows access to the deserip-
tion or source code assoctated with this decision. A tutorial associated with this
panel will lead the nser through the use of the Hyperbink facility in fornung the
closure of a decision.

Fig. 6 show the avont of the sereen during @ typical D-HyperCase SCSSI0N.
The serren consists of several windows. The Trge noderdying window contains
the decision graph (whiclcan be brovght to the foregronnd on demand). The
large window on the right s the editor (moditied Emaes) window for all objects
which belong to the superclass of text objects. These two windows are always
open. In addition, the nser may open ceveral other windows. Fig. 6 shows
several read only windows for displaying varions information and a graphical
editor window to be used for creating document fignres. Each of these windows
contain a menu for aceessing hoth tool specific and D-HyperCase operations.

Surrounding the decision graph window is a hackground which can be se-
lected to access the D-ThyperCase background menu. This menn allows direct
access to the hyperlink Tacilities, cuel as linking to another object or tracing
back to objects previously seen Using the Backgrownd menu, the user can Access
the document base even when using tools which do not have adirect. interface
to the ATIM.
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5 Results

We have developed D-HyperCase using the DBSI approach but since the sys-
tem did not exist when the project first started, much of the documentation of
decisions was done manually. Also during this time, we were still developing
and refining our approach to DBSD. Despite these difliculties, we felt it was
essential to gain experience with our approach and to define and refine it on a
“real” system. The results reported in this section are preliminary ones based
on these early efforts.

5.1 Evaluation Criteria

Performing a cost/benefit. analysis in software engineering is a difficult under-
taking. Many times, one must weigh present costs against future benefits. If
the period of evaluation is short, then anti-regressive activities (such as reor-
ganization and documentation) are penalized relative to progressive activities
(such as adding new functionality). However, the importance of anti-regressive
activities is well known. ‘The success of current progressive activities depends
on past anti-regressive activities. Lehman and Belady [B1.76] have found ratio
of effort between these two activities changes in recognizable cycles. Spurts of
progressive activities are followed by periods of anti-regressive activities to con-
solidate, reorganize and document for future progressive activities. Any period
of evaluation should include both progressive and anti-regressive activities. We
have identified four periods in which evaluation can occur,

System Life Time: A cost/benefit analysis is done over the life time of the
entire system.  Although this would smooth over any cyclic effects, the
life cycle of many systems is too long to make this a practical period of
evaluation.

Release: Most large software systems go through a sct of releases over its life
time. Fach release usually represents a significant change in the system
in which major problems are rectified and new features are added.

Task/Change Order: A task represents a unit of work to be performed. A
task could be defined in response to a trouble report or could represent
the addition of some new - feature. Typically a task represents a work order
to a single progranuner or programning team and is the unit of activity
allocated by managemient. A system release consists of many tasks.

Session: In order to perform a given task, the programmer interacts with the
software development environment during a session. A session represents a
contiguous period of time during which the programmer is working in the
development environment. One task may take several sessions or several
tasks may be completed in a single session.
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One can evaluate either the products of development or the process of de-
velopment or both. Product measures emphasize properties of the product in-
dependent of the method used ‘to generate the product while process measures
deal with the dynamics of the process and its effectiveness. Product evaluations
involve measuring size, lincs of code (LOC) for instance, reliability, and the
other “ilities”. Process evaluations involve such concerns as, how much effort
went into understanding the problem? in implementing a solution? How many
crrors were introduced then corrected before the prodict was approved? What
productivity was achieved? What level of reusability was reached? What level
of effort went into unit testing vs integration testing? Which of the phases of the
life cycle is least effective? most error prone? Sometimes product evaluations
are used as indicators of the goodness of the process. For instance, the number
of LOCs produced in a unit of time is a typical measure of productivity.

We feel that process evaluations are important in understanding the strengths
and weaknesses of a method and in identifying ways in which the process can be
improved. For example, some development systems are able to produce some
documentation automatically and this increases productivity as measured in
product output. However, if this documentation is ignored because it is dif-
ficult to understand or irrelevant, then real effort is not reduced and process
productivity is unaffected. Because of the manual nature of the data collected
for the results report in this section, all of the evaluations are hased on product
metrics. In section 6 the instrumentation of D-HyperCase to collect process
measures will be discussed.

One measure of the cost of a method, is the amount of “extra” documenta-
tion that it requires. Since only the (uncommented) source code is absolutely
necessary to generale a working system, all other docnmentation is “superflu-
ous” to the current version. Besides the cost of the effort required to create
“extra” documentation will be the cost to maintain it during the product’s life
cycle. We estimate that the added information is about. ten percent of the source
code and is roughly equivalent to the amount of comments in the source code.
The number of keystrokes and mouse clicks necessary to provide the linkage
between the sonrce code and the decision is on the otder of one percent of the
source code. We assume that adding these linkage can be antomated to a large
extent by requiring that all documentation he entered in a decision view. Thus
once a view is identified, all lines added are associated with that view automat-
ically. All the updating of the links and nodes to ensure consistency is done
automatically in D-llyperCase. Associating a region of an existing document
to a view can be done by indicating the region in the same manner done for a
cut and paste operation.

Measuring benefit is more difficult. Benefits might be measured as in-
creased productivity, increased reliability, decreased costs or development time,
increased portability or maintainability. Unless a comparative study is done
against others methods, the results represent only one data point which can only
be compared to general statistics reported for the software development indus-
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try (such as the number of LOCs per person-month). Using product oriented
metrics to measure the productivity of software maintenance tasks is distorted
by the distribution of effort in the software maintenance life cycle [Cha88]. A
large percent of the effort involved in a maintenance task in understanding and
analyzing the existing system [IIN90). For instance, there is a high degree of
variability in performing corrective maintenance tasks. A small oversight can
be easily corrected, but a subtle problem which has plagued a mature system
for several years might take quite some time to discover. Using the number of
lines changed or added would not be a good measure of productivity in each
case.

In section 3.1, closure was defined as those portions of the document base
relevant to the performance of a maintenance task. Finding the relevant parts
of the program can be a difficult task, particularly if these parts are scattered
throughout the source code [LLS86). The ideal closure would include exactly
those portions of the document base which are relevant to the task. The manner
in which the document base is structured will determine what closures can be
formed. The actual closure depends then on the structuring method and the
granularity of view point it imposes on the document base. Documents can
be structured by modules, files or objects (for source code) and chapters and
sections (for other forms of documentation) or by decisions. The degree to
which the actual closure matches the ideal closure can be used as a figure of
merit for the structuring method. If the actual closure is a proper superset of the
ideal, then more effort will be required to perform the task because the extra
documentation must be understood then discarded (or worse misunderstood
and changed inappropriately). On the other hand if some of the ideal closure is
not contained in the actual, then it is possible that the soltware engineer will
introduce a fault into the task hecanse some key picce of information is missing.
Precision refers to the degree of match hetween the actual and ideal closures.
The measure of precision consists of two components:

1. The amount or percentage of the actnal closure which is relevant to the
task. If expressed as a percentage, this nuimber represents the density of
relevant information in the closure. Oue minus the density is a measure
of the “noise” in the actual closure.

2. The amount or percentage of the ideal closure which is not in the actual.
This is referred to as the oversight of the closure.

A second measure of the goodness of the actual closure is the number of
structuring units which were used in forming that closure. Each structuring
unit abstracts some aspect of the document base. It represents a set of related
concepts in the document base as a single abstraction. If this representation
helps in the understanding of the set of concepts then it is an appropriate
abstraction. All other things being equal, the fewer abstractions one has to
deal with to perform a task, the better. Carried to the extreme however, this
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would lead to only one abstraction, the system itself. One also needs to measure
the appropriateness of the abstraction for the task. Precision can be used to
measure the appropriateness of the set of abstractions. We define the power
of a set of abstractions relative to some maintenance task as the number of
abstractions used to form the closure of that task.

In addition to counting the number of abstractions which form a closure, the
size of an single abstraction can also be used as an indication of “abstractness”.
The size of an abstraction is the sum total of all documentation related to that

abstraction.

5.2 Evaluation of a major release

The results reported in this section are based on an early demonstration version
of D-llyperCase. This demonstration was put together by modifying and en-
hancing several existing software systems. A graphical editor under development
at Old Dominion University was extensively modified to build and maintain the
decision dependency graph. Several new functions were added to the GNU
Emacs editor to edit structured text and an Abstract Hyperlink Machine was
developed which allowed these two editors to commmnicate. For SGKBS the
changes could be considered a major release of this software. Many unneeded
functions were removed and new functions were added. The size of the source
code went from 9000 LOC to about 6000 LOC. The decision structure for the
old version of SGIKBS was reengineered and for the new version was recorded.
This was done before the methods and metrics of evaluation were decided to
avoid unnecessary bias in creating the decision structure. The number of LOCs
added, modified and deleted were counted.

This preliminary evaluation compares the functional and decision views of
the system. In the functional view, it was assumed that the system was struc-
tured only through its functions and that the function was the lowest level of
granularity in this structure. Thus the actual closure of a task was total 1,OC
found in all relevant functions. In the decision view, the lowest level of gran-
ularity was the decision and the actual closure was the total LOC found in all
relevant decisions ©

Fig. 7 shows the size (in LOCs) of the average and largest abstractions in
both the functional and decision view. ‘The average function contains 57 LOCs
(about one page of code). The average decision contains 220 LLOCs. By the size
of abstraction metric, the average decision is 3.9 times more abstract than the
average function. This is a surprising result since it implies that most times
the solution to a problem involves multiple functions. We had insisted that
only problems which liad viable alternates be recorded in the decision struc-

6 We assume that for both the functional and decision views there exists an indexing scheme
which allows the user to sclect the relevant functions or decisions. This is an interesting
problem in its own right similar in some ways to the indexing scheme required for a reusable

software library.

ORIGINAL

OF Poog

PAGE 1g

CiALry



23

ture. Subproblems which were the decomposition of problems which required
no decision making (that is they were purely transformational decompositions
with a unique transformation) do not appear in these results. We feel that this
is justified since in maintaining a system, one can only change the solution to
those problems which have viable alternates.

The largest decision for SGKBS was which window system to use. The two
primary choices are the window environment provided by SUN Microsystems
or the emerging X window standard. Since the existing SGKBS had already
chosen the SUN window environment, we stayed with this decision for the initial
demonstration. Ilowever, we wanted to assess the impact of changing to X
windows in the future. For an interactive graphics editing program like SGKBS,
the impact of this decision is pervasive (as will be discussed in the analysis of
the precision of the functional and decision views). This decision impacted
almost. 1700 LOCs. This is 4.7 times larger than the largest function. Again
this indicates that, by the size metric, decision views are more abstract than
functional views.

The activities involved in generating the new release of SGK BS resulted in
the addition, modification and deletion of LOCs. Since the effort required to
add, modify and delete LOCs is different, the results for the power of a set
of abstractions are separated into three categories shown in Fig. 8. Again,
these results indicate that the decision view is more abstract (involves fewer
abstractions) than the functional view.

Although the decision view is more abstract than the functional view by the
power and size measures, there is the danger it is too abstract and lacks the
precision to support the maintenance process. Fig. 9 shows the precision results
for the average and largest abstractions.

The average decision impacts 220 LOCs which are dispersed throughout 12
functions. Since on the average 12 functions contain 684 LOCs, the functional
view requires the software engineer Lo read 3.1 times as much code to nnderstand
one decision as the decision view. The code for the average decision is dispersed
throngh the related functions at a density of .32 (1 over the ratio 3.1).

The decision with the greatest impact (the choiceof windowing environment)
affects 1699 LOCs. These LOCs are dispersed throngh 105 functions (about
95% of the functions). Since these functions contain 6424 LOCs, the density
of the functional closure relevant to this decision is .26 (1/3.8). Using the
principle of information hiding, it could he argued that if it was known that
the choice of windowing environment was subject to change, then it should
have been encapsulated hehind a module or package. We would disagree with
the practicality of this solution in this case. Trying to hide all the window
functions behind a module would be the equivalent of writing a new windowing
standard (as defined by the set of interface calls to this package). This is clearly
a major undertaking in its own right, probably greater than the writing of
the target software. In addition, this interface must be sufficiently general to
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allow alternate window environment philosophies to be hidden therein. It is
not clear that this is desirable, practical or feasible. How can one anticipate all
approaches to windowing? The philosophy embraced by the windowing system
may result in a certain approach to solving problems. A change in philosophy
would dictate that these decisions he reexamined and possibly changed (o best
take advantage of the new philosophical approach. Hiding the features which
one enviromnent supports well will resalt in melliciencies. In fact, one of the
reasons for changing from ane window systene to another is to take advantage
of its nnigque features, Where feasible one shonld Tude decisions, hat this s not

always feasible or desirable.

Fig. 10 gives the precision results for LOCs modified and deleted from hoth
the decision and functional views

In changing SGRKBS. 233 LOCs were modilied, 20936 LOCs were deleted
and 536 LOCs were added  The added LOCS were e the new decisions and
new Munetions identificd i Fig. R The modified LOCs were contained in 100
functions and & decisions eontaming 7860 LOCs and 3150 LOCs respectively.
Although the relevance density of the decision view is hetter than the functional
view, neither view was particularly good at precisely identifving the LOCS which
mnst be modified. Although only 233 LOCS were in the implementation closure
with respect ta modification, we had no way of measoring the understanding
and assessment closures, Clearly the software engineer will examine and analyze
1,LOCs which will not be changed or defeted and that this is necessary inun-
derstanding the program and assessing inpaet. Howeverwe did examine some
of e decisions changed in miore detail to deternmne swhy the decision closure
seemed so imprecise. We discovered that in the modified SGRBS new problems
were being introduced whielh had nat been identitied i the old systen. For
example in the old systenm the shiapes of the graphical objects had no meaning,.
In the menu nsed to create objects, the names displayed there referred to the
geometric shape (sucle as rectangle or oval). T the modilied SGKBS, we use
these shapes for special purposes, thas an oval represents a prohlem node and
a rectangle represents a decision node The new system introduces the new
problem of associating shapes with certion semantic objeets. This problem s
largely nnrelated to the problems of displing, and nemipulating geometrie ob
jeets. Since in the old system this problem had net been anticipated, the code
associated with generating menu lahels was part of 2 much larger decision on
the geomietrical shapes of objects and their display (which geometric objects
should and conld be displayed) Onee the new problem of associating a seman-
tic object (problem or decision node) with a prometric shape was introduced,
the precision of that decision mereased dramatically

Since it is unlikely that all uses of the system will be anticipated in the
original design, we envision a growth in the precision of the problem solving as

TOne solution to the windowing change in SGRKBS i o emulate the sunview windowing
system in X, Tn fact SUN distribntes suchan cimnlator Lot hecanse of incompatibilities some

changes in the progeam must <6l be unidertaken



a resull of maintaining the system. ‘The ability to refine the decision structure
through nse is important for initial design and for the reverse engineering of ex-
isting designs. It would be a mistake to burden theanitial design team with the
task of identifying and docunienting all potential decision points in the system.
Rather, they shouk! dociment only those decisions in which various alternates
were actively investigated aud analyzed. IFduring maintenance viable alternates
to certain design problems become evident or new problems become identified,
then the decision structure can be refined 1o rellect this new insight. Thus one
may discover a useful decision substructure ona problem which originally ap-
peared 1o have been a monolithic solution. With respect fo reverse engineering
the decision structure on an existing software systeni. the possibility for rapid
growth of precision will miean that a useful decision strueture can be identified
on those portions of the system which are subject to the most change.

The original version of SGRKBS contained a mnmber af features which were
wol. needed Tor D-lvperCase. Removing these featnres was amajor part of
the work done in converting SGRBS. Phe nnnceded featnres corresponded to
18 problems which no longer needed ta be solved Removing these decisions
and the related code defeted almost 3000 LOCs From the functional view,
75 functions (containing 2119 LOCs) could he climinated entirely. The row
marked “functional(deleted) ™ gives results for the closure consisting only of
those functions which conld be deleted dn their entirety As can be seen. this
closure overlooked a large proportion of the bsolete code Tnothe row marked
“Tunetionad{dedeted )™ all fonetions containine, obaolete codde e meluded i the
clostire . In Chis eases e relevimee density is fow ik again indieates that
the fanetional view docs not map well onto the activities which are performed
during maintenance. For deleted code, the decision view s significantly more

precise than the functional view

6 Discussion

We believe that the DS approach to the developiment of software systems
represents a significant and novel alternative (o existing software development
paradigins. However our experience with this method s still imited. There
is still much work to he done in developing gnidelines for using a DBSD ap-
proach and in integrating DBSD into a soltware development methodology.
D-UyperCase was built to serve as an experimental imedinm for exploring and
developing the DBSD paradigm. However inany Large systenane rans the risk
of burying good ideas wnong had ones or in a poor implementations. Simple
evaluations, such as reported in the previous seetion, will not uncover subtle
problems or advantages I this vegard, aneedoral evalnation is often important
in focusing attention an Gie eritical issnes T this section we disenss onr ex-
periences in developing D-HyperCase and onr plans o instriment it to collect
more detailed data for further evaluation.
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The DBSD approach is not a panacea for all the ills plagning the software
engineering community. \While we claim the decision strueture can be used to
provide multiple “natural™ vicws ol the software system relevant to the devel-
opment. process, the definition of the decision graph is neither easy nor ohvious
at first try. But the generation of complex syvstems is not an easy nndertak-
ing [BroR7 Par85]. The determination and articulation of the decision structure
requires an experienced person, one who can nndercover the underlying prob-
lems and relationships which justify certain solutions. There is a tendency to
structure the decision graph using the temporal order in which decisions were
made mstead by necessary dependencies. Also there is the tendency to identify
decisions with fTonctions. There is also no reason to helieve that the decision
grapliois unique. A more expericnced designer will explore more alternatives,
see more relationships hetween problems and adentify hetter ustifications than
a less experienced colleague. Documenting the decision structure places an ex-
tra burden on the software engineer. Documentation ix the price one pays for
mereased mantamability. Oor experience tndicates that docmmenting the deci-
sion steneture does support the design process hy foensing on the identification
of alternates and jJustilications

Reverse engineering the decision structare of an existing systenis dilfienlt
and in some cases impossible. The deciston stractinre s not in the prodnets of
development. Onty partial evidenee of the decision making may be present. In
many cases, one will have to guess at the rationades helind certain decisions.
[t as unlikely that reverse cugineering could be antomated for {he foresecable
fture. The difliculty i reverse engineering the decision structure is one of the
reasons soltware maintenance is so diflienlt. The DBSD approach does not.
necessartly make (he reverse engineering casier, huat it does allow the software
engineer to record the insights thal are gained during a maintenance task with
respect to the decision stractare so that the next time maintenance is done an

the same problems, this insight is available

6.1 DDBSD Methodology

We helieve that the DBSD approach to software development ean he incor-
porated in many different wethodologies. Tn tlis section, several observations
about the influcnce of the DBSH paradigim on methodology will be made. Many
of these observations relate to the namner i whicl the DRSD approach allows
concurrent progress on dilberent phases of the Iife ovele

Solution First. It olten casier to identify the solution than the problen it
solves. This difficnlty is not particular to the decision hased approach. I takes
great skill to uncover the real problem when given a list of wants and desires.
End users find it hard to articulate their real needs bt can often recognize when
a proposed solution meets or doesn’t meet those needs

Generalization of Problem. To many cases, the solntion to a particalar
problem can be satislied by generalizing the problem. solving the general prob-
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lem then instantiating the general solution for the original problem.  When
we first started development of D-1lyperCase. we had only (wo tools, Fmacs
and SGKBS and no separate HyperLink machine. We first {ried to build hy-
perlinks hetween Emacs and SGRBS before we realized that we could solve the
more general problem, resulting in the HyperLink Machine, and use it to solve
our particular problem. Once the more general problem is solved, extending
D-HyperCase to other tools is much simpler since communication from a tool is
always to the Abstract lyperLink Machine and doesu’t change as more object
types, operations and tools are added.

Finding a Rationale. Sometimes the alternates (o solving a problem can
be identificd and analyzed but there is no obvious preferred ehoiee. Tu such
cases, one could choose one of the alternates arbitrarity, The lack ol elear eriteria
for choosing an alternate pomnts to an incompleteness i the requiretients. In
developing D-HyperCase we found that developing o rationale often involved
the refinement of a general non-funetional requirenient

Non-functional Problem Solving. Rationalizations tewd to involve non-
functional requirements such as performanes or nser friendliness. Addressing
non-functional requirements involves a ditferent stvle of problem solving from
that which addresses Tanetional requirements o funetonal requirenients there
s usually a criteria for determining whether or nol the solution satisfies the cri-
teria. Also only one allernate is chosen as a solution even though there may
be several viable ones (in the prablem sobving veaph the alternates for a fune
tional problem form an exclusive-or aode) Lor noa functional requirements,
the criternia for choosing among alternates is less absolute I the performance
requirement as {or a response time of 6 seconds, an actual response timie of 5.1
seconds may be aceeptable. The eriteria tor deciding that a program meets the
requiretient for user friendliness is even Jess precise. For some non-functional
requiretnents, several alternates anay be chosen simultanconsly. Achieving a
performance requirements may require the development of several algorithins
and data structures. Achieving user fricndliness s oalso o matter of degree. In
Lhe problem solving graph. the alternates for non funetional probleims may forim
an inclusive-or node

Articulating the Requirements, The generalization of problems, the
developiment of rationale and the refinement of non-functional reqguivements in-
dicate a style of problem solving which goes from particular instances to general
problems and solutions. Often in this process it is discovered that the original
problem requirements were incomplete. We consider the identalication and ar-
ticulation of true problems to be an important aspect of software development,
Unless a project involves the development of software which is well understood,
development methodolagies which assune that the requirements can be accu-
rately stated beforehand are bound 1o fail {SneR0].

Opportunistic Scheduling. We hiave not fonnd the design process for D-
HyperCase ta he top down and we suspect that nost desipn s not. During the
creative ferment of design, people work at iy levels, exploring eritical issues
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in depth until a solution path becomes elear. In the process of design. new
problems may be identified whose solution oue may want to defer. Sometimes
the alternates are identified and analyzed hut the final solution is deferred. If
missing requirements are discovered, then the solution of a particular problem
may have to be deferred until the requirements are formally modified. We have
found that work is done at many levels of the design conenrrently and that,
there can be many unresolved issues present simtltancously. We have found
that the decision hased approach helps to orginize and structure this process.
As problems are identified, alternatives rejected and decisions made, they are
recorded. Tt is not necessary 1o immediately associate these (partial) decisions
in the decision dependency graph. Tustead, these decisions ean be placed into
aproject agenda for [ater resolution. 10 is the responsibility of management. Lo
allocate resonrees to the decisions on the project apenda which will lead to (heir
eventual solution and proper placement in the decision <tricture.

Avoiding Bias, Shnee every solution shonld he conneeted to the prolilen i
solves, there should he o clear path from souree code to requirements. Solutions
which cannot be traced back to some problenn i the veeurivements indicate either
a missing requirement, aonon problem or an inplementor adided featuree. In the
first case the requirements shonld be clianged T the <econd ease the solution
to the non-problenm should he climinated. In the last case, the user may clioose
to keep this added feature hut not change the requirements. ‘This feature is
then justified as a useful bt non essential part of the progeane. T subsequent
minntenance, these features conld be remmoved o it s found that their costs have
become nnexeeptably high

Support for Continued Development. We have fonnd recording alter-
natives to he valnable hoth to document dead ends and o provide starting
points for later improved designs. This later i especially uselol i one is using
an incremental huild philosophy

6.2  Granularity of the Decision Structure

One of the problems in using the DBSD approach 1o soltware developinent

i1s its generality. Alimost every action ean be thonght of as making a decision
to solve some problem. Many of these decisions are trivial or nnimportant
and docummenting them would require more effort than any potential benelit
could justify. Examples of such decisions are what wimes to use for temporary
variables or how 1o split a complex expression across multiple Eines. Such trivial
decisions do ot need to he recorded either hecause the decision imaking process
can be easily reconstructed or there is httle impact in changing them. Recording
trivial decisions not only places an unnecessary burden on the designer but also
serves to overwhehm the mamtainer with trivial docmunentation.  Developing
nseful guidehnes for the recording of decisions is one arean which needs further
research.

In other eases o problem will decompose into sabproblems for which there
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are no viable alternates. Por example, if a stack is chosen as the solution to some
data structuring problem, then designing the stack decomposes into designing
the iniliation, push and pop operations. There s no choiee about having these
operations b A decomposition for which there are no viable alternates is catled
a design decomposition and a decomposition for which there are viable alter-
nates requiring a decision and justification is called a deecision decomposition.
Our first attempts to build a decision dependency graph for D-HyperCase in-
cluded both design and decision decompositions. We found such graphs to be
unwieldy and repetitive of information contained in other documentation. We
now require that ouly decision decompositions be included in the graph. A de-
sign docwment is still praduced in conjunction with the decision graph and we
imtroduce a ‘design” link hetween an eletient in the design docnment and anode

in the decision graph.

6.3 Evaluation of D-lHyperCase

It is of utmost inportance that the cost to the nser of any new method or
tool be sulficiently low ta justify the advantages claimed.  We have claimed
five major advantages: case of understanding. a handle at assessing the impact
of a proposed change. traceahility of source eode throngh documentation to
requirements, ease in rensing existing code for madification and support. for
creative design work These are major benefits but only il a system exists to help
gather and maintain the necessary imformation as well as allow for consistency
checks.

The statistics estimaded in section 5 vetlect astatic cvaluation of the decision
structure. Tnoorder to understand the dynmnies of the design process, we are
instrumenting D-HyperCase (o colleet statistios on offort and benefit. While
the closire of a Gask s aostate coneept . we belicve there miay also e adynanme
cocepl akin 1o the workimg set ndel of virtual imemory Fhe working sct
of a closure is (hat subset of the docnmentation which the user needs to access
simmltanconsly in order to performe some part of a task The ability to simulta-
neonsly view information in several windows is one way o soltware engineering
environment might snpport a0 working set model Ax of now, we don’t know il
the working set model is appropriate, or, il s, how big o working set should he.
We liope to gain some insight into these issues throngh frther experimentation

with D-HyperCase.

R There are choiees abont the rndertving data ston tes chosen to implement astack. These
chaices affect all the operations s stacks. Again we ser that decisions do not necessarily map

into fnctions or operations
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7 Conclusions

The Decision Based Software Development Paradigm is being developed to
support the process of developing and maintaining software systems.  In this
paradigm, the design process is considered a problem solving activity in which
problems arc identified, alternates proposed and analyzed and a decision of a
particular solution is made. By recording this process, hoth initial development
and subsequent maintenance is facilitated.  Our expericnces in applying this
paradigm to the development of a prototype software enginecring environment
indicate that it supports a design process which allows progress in many difTer-
ent phases of the software lile cycle simultancousty. In particolar, this approach
aids in the development and articulation of the systems requirements. This
paradigm makes such coneurrent activity possible by making the process more
visible and therefore more manageable. Non-functional prablemy solving plays
an timportant role in the design process,

Prefiminary resnlts on the nse of the DBSD paradigmn to support the main-
tenance process indicate that the decision structure provides an alternate and
mare abstract view of the software document base. In addition the precision of
a decision view for finding the documentation relevant to a particular mainte-
nance Ltask is greater than that of a functional view. This precision should aid
in the maimtenance of ancillary doenmentiation sinee the decision view includes
all relevant docimments, providing a linkage Tron requirements to sonrce code.

In order to frther develop a methodology Tased on the DBSD paradigm,
an evaluation of it e the design e movnlenanee process e hemg ader
Laken. Criteria for evaluating the dynamics of the development process have
been proposed and we are instromenting D-byperCase. the prototype DBSD

cuvironment., to colleet evaluation data,
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Case Function | Decision View | Ratio
{in LOC) (i LOC)

Average AT 220 3.9
Largest 360 1699 17
Figure 70 Size of Ahsiractions
Type # Functions | # Deasions | Ratio
Modified 100 R 6.2
Deleted W0 18 4.2
Added n | L.8
Fignre 82 Power of Closire Set
Class Functional | Decision View | Ratio | # 1
1.OC L.OC
Average G814 220 3l 12
Largest 6121 1699 b 105

Figriire 90 Precision of Average and Largest Abstractions

i3

View Point. # Abstractions | Size Closure | Relevanee | Oversight
(Class) (LOCY | (Percent) | (Percent)
Functional(Modilied) 100 TRG0 2.96 0
Decision (Modified) N AiA50 135 0
Functional{ Deleted), 5 2119 100 268
Functional{ Deleted), 102 72006 40.74 0
Decision(Deleted) IR 2946 100 0

Figure 10:

Precision for Modified and Deleted LOCSs
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